Granite™ VWire 305 是一个用于标准振动线传感器动态测量的八通道接口。使用VWire 305接口,您可以以“动态”速率操作任何标准振弦传感器,以实现更快、更好的测量,而无需购买或安装新的传感器。
该接口使用获得专利的频谱振弦分析技术(VSPECT®)测量激励之间导线的谐振频率。VSPECT提供了非常精细的测量分辨率,并通过基于频率内容区分信号和噪声来限制外部噪声的影响。信号可以在更恶劣的噪声环境中通过更长的电缆传输,使您在传感器和数据采集系统的选址方面具有灵活性,同时提供传感器诊断。
Learn about our patented VSPECT® spectral-analysis technology at our VSPECT® Essentials web resource.
Learn about dynamic vibrating-wire sensor measurements at our Dynamic Vibrating-Wire web resource.
动态振弦测量技术受美国专利号 No. 8,671,758 保护,振弦光谱分析技术(VSPECT™)受美国专利号 No. 7,779,690 保护。
In addition to the dynamic vibrating wire measurement, the VWire 305 makes several auxiliary measurements. A static vibrating wire measurement is made once each second, along with the dynamic measurements, which provides finer measurement resolution and greater immunity to external noise sources. The VWire 305 includes a thermistor input channel paired with each vibrating wire channel, featuring high-precision 24-bit measurements at a 1 Hz rate. Unique to the VSPECT® technology, a rich set of diagnostic parameters is provided with the vibrating wire data.
The VWire 305 has the capability to simplify post-processing of data by computing common values internally. Vibrating wire data can be reported as measured frequency or as the frequency squared with a multiplier and offset applied. The thermistor data is reported as resistance or is converted to degrees Celsius using the thermistor’s Steinhart-Hart coefficients. The VWire 305 can also internally compile rainflow histograms from the final data and report the values at user-specified intervals.
Each channel has two terminals for connecting to the coil of the vibrating wire sensor. Both vibrating wire terminals are labeled VW, and the polarity of the wiring is arbitrary. The sensor is excited and measured through the same connections. Sinusoidal excitation is applied for a few cycles of the wire oscillation. The wire is maintained in a continuously vibrating state. Excitation voltage varies automatically to maintain the desired return signal strength.
Each channel has two terminals for connecting to the thermistor. Both thermistor terminals are labeled T, and the polarity of the wiring is arbitrary. The measurement is a half-bridge configuration with the excitation circuitry and completion resistor integrated into the module.
-NOTE- | Electrical specifications are valid over a -40° to +70°C range, non-condensing environment, unless otherwise specified. Extended electrical specifications are valid over a -55° to +85°C range in a non-condensing environment. |
Operating Temperature Range |
|
Scan Rates | 20, 50, 100, 200,or 333 Hz (dependent upon the resonant frequency of the gages) |
CPI Baud Rate | Selectable from 25 kbps to 1 Mbps |
Input Resistance | 5 kΩ |
Excitation Voltage Range | 0 to ±3 V (6 V peak-to-peak) |
Excitation Voltage Resolution | 26 mV |
Measurement Frequency Accuracy | ±(0.005% of reading + measurement resolution) |
Sustained Input Voltage without Damage | -0.5 to +7.1 V |
USB | USB 2.0 full speed connection is available for attaching the device to a PC. (This port is provided to configure the module, send updates, and communicate with the Dynamic Vibrating Wire Toolbox software. The USB port is not provided for use within a permanent data collection system.) |
CPI | Used for connection to the data logger. Baud rate selectable from 50 kbps to 1 Mbps. (Allowable cable length varies depending on baud rate, number of nodes, cable quality, and noise environment, but can be as long as 2,500 ft under proper conditions.) |
Mounting | Standard 1-in. grid (Optional DIN rail mounting available.) |
Dimensions | 20.3 x 12.7 x 5.1 cm (8 x 5 x 2 in.) |
Weight | 816.47 g (1.8 lb) |
Measurement Resolution at Sample Rates |
|
-NOTE- | Typical values for a 2.5 kHz resonant sensor |
1 Hz Sample Rate | 0.005 Hz RMS (noise level) |
20 Hz Sample Rate | 0.008 Hz RMS (noise level) |
50 Hz Sample Rate | 0.015 Hz RMS (noise level) |
100 Hz Sample Rate | 0.035 Hz RMS (noise level) |
200 Hz Sample Rate | 0.11 Hz RMS (noise level) |
333.3 Hz Sample Rate | 0.45 Hz RMS (noise level) |
Sensor Resonant Frequency Range |
|
20 Hz Sample Rate |
|
50 Hz Sample Rate |
|
100 Hz Sample Rate |
|
Thermistor |
|
Completion Resistor | 4.99 kΩ 0.1% |
Excitation Voltage | 1.5 V |
Resolution | 0.002 Ω RMS (@ 5 kΩ thermistor resistance) |
Accuracy | 0.15% of reading (Thermistor accuracy and resistance of the wire should be considered as additional errors.) |
Measurement Rate | 1 Hz |
Power Requirements |
|
Voltage | 9.6 to 32 Vdc |
Typical Current Drain | 190 mA (@ 12 Vdc) |
Please note: The following shows notable compatibility information. It is not a comprehensive list of all compatible products.
Product | Compatible | Note |
---|---|---|
CR1000X | Requires OS version 4 or greater. | |
CR6 | Requires OS version 10 or greater. |
Product | Compatible | Note |
---|---|---|
Granite 10 | Requires OS version 1 or greater. | |
Granite 6 | Requires OS version 1 or greater. | |
Granite 9 | Requires OS version 1 or greater. |
The VWire 305 is compatible with CPI-enabled data loggers only.
DVW Tool Box is an application-specific software tool for demonstration and evaluation of the CDM-VW300, CDM-VW305 and VWire 305 dynamic vibrating wire interfaces.
Execution of this download installs the VWire 305 Operating System on your computer for upload to the VWire 305 device with Device Configuration Utility.
查看修订历史Program to read 20 Hz dynamic data from two VWire 305 analyzers measuring eight channels each.
The CPI Calculator is a downloadable Microsoft Excel spreadsheet used to estimate the usage and capacity of a CPI network. The calculator provides an overview on CPI devices including the CDM-A108, CDM-A116, CDM-VW300, CDM-VW305, and the CSAT3B. The calculator can also estimate the measurement speed of the CDM-A108 and CDM-A116 based on the number of channels and measurement parameters.
The CPI Calculator is an estimation tool and will help you better understand and design CPI networks by considering the following:
Granite VWire 305: 2
A maximum of 15 VWire 305 modules can be connected to a single CPI bus. For applications requiring more than 15 modules, the options are to purchase another CR6 Measurement and Control Datalogger or to use a Granite™9 Measurement and Control Data-Acquisition System that supports two independent CPI busses.
The default CPI bus speed setting is 250 kB/s. The speed is adjustable in your CRBasic data logger program. Use the CPISpeed() instruction in your CRBasic program to adjust the CPI bus bandwidth to meet the following maximum combined (total) Ethernet cable lengths: